META-ANALYSIS OF EFFECT OF ATMOSPHERIC POLLUTION ON A BIRTH OUTCOMES: EVIDENCE FOR FUTURE RESEARCH

Andreja Kukec, Ph. D. Department of Public Health, Faculty of Medicine, University of Ljubljana <u>andreja.kukec@mf.uni-lj.si</u>

Petra Klepac, Igor Locatelli, Sara Korošec, Nino Künzli, Andreja Kukec

Auckland, 20 - 23 March 2018

ENVIRONMENTAL PUBLICH HEALTH CHALLENGES

Adverse pregnancy outcomes are associated with increased neonatal and childhood morbidity / mortality, as well as the risk of cardiovascular diseases, diabetes, liver disease and psychiatric conditions later in life

ENVIRONMENTAL PUBLICH HEALTH CHALLENGES

Source: Slama et al. Envrionmental Health Perspective, 2008, 116(6):795

Fig. 1. Possible biological mechanisms by which air pollutants may affect birth outcomes

EVIDENCE BASED PUBLIC HEALTH - APPROACHES

Not all evidence is judged to be of equal value, that is, there are hierarchies of research design that are evaluated to have different strengths, different levels of value in the decision making process.

PREVIOUS EVIDENCE BASED: AP and PREGNANCY OUTCOMES

Int. J. Environ. Res. Public Health 2014, 11, 7642-7668; doi:10.3390/ijerph110807642

International Journal of Environmental Research and Public Health ISSN 1660-4601

www.mdpi.com/journal/ijerph

Review

Effects of Air Pollution on the Risk of Congenital Anomalies: A Systematic Review and Meta-Analysis

Esther Kai-Chieh Chen¹, Denis Zmirou-Navier^{1,2,3}, Cindy Padilla^{1,2} and Séverine Deguen^{1,2,*}

Research Children's Health

Maternal Exposure to Particulate Air Pollution and Term Birth Weight: A Multi-Country Evaluation of Effect and Heterogeneity

Payam Dadvand,^{1,2,3} Jennifer Parker,⁴ Michelle L. Bell,⁵ Matteo Bonzini,⁶ Michael Brauer,⁷ Lyndsey A. Darrow,⁸ Ulrike Gehring,⁹ Svetlana V. Glinianaia,¹⁰ Nelson Gouveia,¹¹ Eun-hee Ha,¹² Jong Han Leem,¹³ Edith H. van den Hooven,^{14,15} Bin Jalaludin,^{16,17,18} Bill M. Jesdale,¹⁹ Johanna Lepeule,^{20,21,22} Rachel Morello-Frosch,^{19,23} Geoffrey G. Morgan,^{24,25} Angela Cecilia Pesatori,²⁶ Frank H. Pierik,¹⁵ Tanja Pless-Mulloli,¹⁰ David O. Rich,²⁷ Sheela Sathyanarayana.²⁸ Juhee Seo,¹² Rémy Slama,^{21,22} Matthew Strickland,⁸ Lillian Tamburic,²⁹ Daniel Wartenberg,³⁰ Mark J. Nieuwenhuijsen,^{12,3} and Tracey J. Woodruff ³¹

Review

Prenatal ambient air pollution exposure and the risk of stillbirth: systematic review and meta-analysis of the empirical evidence

Nazeeba Siddika,¹ Hamudat A Balogun,¹ Adeladza K Amegah,^{1,2} Jouni J K Jaakkola^{1,3}

There is a growing number of studies on the association between ambient air pollution and adverse pregnancy outcomes, but their results have been inconclusive

AIM

Systematically review the studies on the association of AP and pregnancy outcomes

- to outline the pregnancy outcomes according to AP, exposure assessment methods, potential confounders and gestational windows of exposure
- to summarize the effect estimates
- to indicate future environmental public health challenges

ID	Title		Status	Last edited	
CRD42018081540	Association between prenatal exposures to a birth weight, low birth weight and preterm bir identification of environmental public health of	Ital exposures to ambient air pollution and ht and preterm birth: meta-analysis and ntal public health challenges		11/02/2018	Ξ
PROSPERO International prospective reg	ister of systematic reviews	NHS National Institute for Health Research			

METHODS: meta-analysis approach

METHODS: meta-analysis approach

- routine monitoring data (MS)
- modelling approaches

۲

- personal monitoring, biomonitoring, and exposure to traffic
- Gestational windows of exposure
 - definitions of gestational months and weeks of exposure (month 1: weeks 1-4,...month 9: weeks 36-40)

 Heterogeneity of study results (I²) - the percentage of the variability in effect size that was due to heterogeneity

(RevMan) version 5.3

rather than chance

SEARCH STRATEGY CRITERIA

Figure 1. Flow chart of selection of studies.

- retrospective cohort design (n=45)
- routine AP monitoring and birth records data
- median sample size was 37.339 births
- North America (n=54), Europe (n=17), Asia (n=11), South America (n=9) and Australia (n=5)
- time period: less than a year to 31 years, most commonly 3-5 years (n=41)

15th World Congress on Environmental Health				
Phase 1-QUALITATIVE SYNTHESIS	RESULTS			
Pregnancy outcomes	 PTB, LBW, congenital anomalies and small for gestational age/intrauterine growth restriction (SGA/IUGR) different definitions for the same outcome PTB was defined as birth <37 weeks of gestation; PTB was categorized by different completed weeks of gestation: 20-23 (Padula et al., 2014a), 24-27 (Padula et al., 2014a), 20-27 (Padula et al., 2014b; Stieb et al., 2016), LBW/VLBW was defined as weight <2500/<1500 g at birth SGA/IUGR were defined as BW<10th percentile for gestational age 			
Atmospheric pollutant	 PM₁₀, PM_{2.5}, NO₂, CO, and O₃ different definitions of the same exposure group chemical constituents of the same particle group PM_{2.5} chemical constituents: chromium, copper, iron, manganese, nickel, vanadium measured exposure to mixtures of pollutants 			

Impacts of NO_2 and $PM_{2.5}$ on PTB were most commonly investigated in the included studies, followed by the effect of PM_{10} on PTB. PTB, LBW

Phase 1-QUALITATIVE SYNTHESIS

RESULTS

Exp

Pollutants

Phase 1-QUALITATIVE SYNTHESIS

RESULTS

based on routine	
monitoring data	

- Area-wide
- Nearest MS
- IDW -multivariate interpolation with a known scattered set of points

approach		resolution*	resolution	change**		
40 km)	SO ₂ , NO ₂ , CO, O ₃ , PM ₁₀ , PM ₂₅ , PM _{25_CC}	Daily	Res. at birth	No	7	Darrow et al., 2009; Faiz et al., 2012; Gilboa, 2005; Gray et al., 2010; Marshall et al., 2010; Rich et al., 2009; Wilhelm and Ritz, 2005
MS , 20, 36, 4	SO2, NO2, CO, O3, PM10	Daily	AU at birth	No	2	Hansen et al., 2009; Ritz et al., 2002
	PM10	Daily	Res. during pregnancy	Yes ³	1	Zhao et al., 2015
est 16	NO ₂ , CO, PM _{2.5}	Daily	AU at birth	Yes ³	1	Ritz et al., 2007
Near 0, 12,	SO ₂ , NO ₂ , CO, O ₃ , PM ₁₀ , PM _{2.5} , PM _{2.5-10}	Weekly	AU at birth	No	3	Chang et al., 2012; Green et al., 2015; Morello- Frosch et al., 2010
5,1	O3, PM2.5	Weekly	Res. at birth	No	2	Pereira et al., 2014; Warren et al., 2013
(within	NO, NO ₂ , NO ₃ , CO, O ₃ , PM ₁₀ , PM _{2.5}	Monthly	Res. at birth	No	2	Laurent et al., 2013; Wu et al., 2011
	SO ₂ , NO, NO ₂ , CO, O ₃ , PM ₁₀ , PM _{2.5}	Monthly	AU at birth	Yes ²	1	Brauer et al., 2008
	NO, NO ₂ , CO, O ₃ , PM ₁₀ , PM ₂₅	Daily	Res. during pregnancy	Yes ²	5	Mobasher et al., 2013; Padula et al., 2013a, 2013b, 2013c, 2015
	PM10	Daily	Res. during pregnancy	Yes ³	1	Zhao et al., 2015
8	NO2, CO, PM10, PM2.5	Daily	Res. at birth	No	1	Padula et al., 2014a
	SO ₂ , O ₃ , PM ₁₀	Daily	AU at birth	No	1	Dugandzic et al., 2006
	SO ₂ , NO ₂ , CO, O ₃ , PM ₁₀	Monthly	AU at birth	No	3	Hwang et al., 2011, 2015; Lin et al., 2015
	PM2.5, PM2.5_CC	Monthly	Res. at birth	No	1	Ebisu et al., 2014
	SO2, NO2, NO, CO, O3, PM10,	Monthly	AU at birth	Yes ²	1	Brauer et al., 2008

Time

Spatial

Address

References

based on modelled data

- LUR modes
- Dispersion models
- Photochemical models
- Chemical models
- Spatio-temporal models

Exposure estimate model	Pollutants	Time resolution	Final area of observation	Address change**	n	References
Dispersion models						
CALINE 4; Gaussian plume atmospheric transport model	NO _x , PM _{2.5} , SO ₂ , TSP	Daily, Annual	Res. at birth	No	2	Rogers et al., 2000; Wu et al., 2011
MHI-Airviro Gauss dispersion model and wind model	NO _x	Temp. adj. (MS)	100 m×100 m during pregnancy	Yes ¹	1	Olsson et al., 2015
CHRONOS	O ₃	Temp. adj. (MS, IDW, monthly factor)	21 km×21 km during pregnancy	Yes ²	1	(Lavigne et al., 2016)
ISCLT3	BTX, ethylbenzene	Annual	AU at birth	No	1	Lupo et al., 2011
Dispersion model, satellite images, kriging	NO ₂	Hourly	Res. during pregnancy	Yes ²	1	Clemente et al., 2015
Photochemical models						
CMAQ	PM _{2.5_CC}	Weekly and daily	12 km×12 km at birth	No	2	Warren et al., 2012, 2013
Statistical fusion of MS data and CMAQ	SO ₂ , NO ₂ , CO, O ₃ , PM ₁₀ , PM _{2.5} , PM _{2.5} cc	Daily	-		3	Chang et al., 2013; Ha et al., 2014; Hao et al., 2015
	PM25	Weekly	-		1	Chang et al., 2012
	O3	Daily	AU at birth	No	1	Warren et al., 2013
Statistical fusion of MS data and CMAQ, kriging, stochastic simulator	PM25	Daily	AU at birth	Yes ³	1	Berrocal et al., 2011
Chemical models						
Chemistry CATT-BRAMS model	CO, PM25	Daily	AU at birth	No	1	da Silva et al., 2014
Satellite data and simulations with	PM25	Temp. adj. (for seasonality, monthly	Hospital of birth	No	1	Fleischer et al., 2014

Exposure assessment approaches

Phase 1-QUALITATIVE SYNTHESIS

RESULTS

Table 2: Distribution of included studies by defined gestational windows of exposure for selected pregnancy outcomes and selected ambient air pollutants.

	PM10	PM _{2.5}	NO ₂	CO	O ₃
РТВ					
1. trimester	11	12	12	8	9
2. trimester	7	9	10	5	6
3. trimester	5	6	7	3	4
Entire pregnancy	6	13	8	5	5
Last 3 months	2	2	2	1	2
LBW (<2.500 g)					
1. trimester	4	3	5	4	5
2. trimester	4	4	6	4	6
3. trimester	5	4	6	5	6
Entire pregnancy	6	11	9	5	4
14. week+1. month+16. week	1	/	2	2	1
Last 6 weeks+last mont +last 4 weeks	1	/	2	2	1
BW					
1. trimester	7	6	10	4	4
2. trimester	7	7	10	4	4
3. trimester	7	5	10	4	4
Entire pregnancy	7	10	10	4	3
14. week+1. month+16. week	/	1	/	/	/
2 months	/	1	/	/	/
Last 3 months	/	1	/	/	/
Last 2 months+last 8 weeks	/	1	/	/	/
Last 6 weeks+last month+last 4 weeks	1	3	1	1	1
SGA/IUGR (BW<10 th percentile for gestation	nal age)				
1. trimester	2	1	4	2	3
2. trimester	1	1	5	2	3
3. trimester	1	1	5	2	3
Entire pregnancy	1	3	4	1	1
8. month	1	/	/	/	/
9. month	1	/	/	/	/
Last 6 weeks+last month+last 4 weeks	1	/	2	2	2

Phase 2 META-ANALYSIS

RESULTS

Summary of pooled effects estimates, expressed as odds ratios for preterm birth (**PTB**) for increased exposure of ambient air pollutants; 10 μg/m³ increment in PM₁₀ (closed square) or PM_{2.5} (open triangle)

PM and PTB (entire preg.) the polled EEs per 10 μ g/m³ increase in pollutant concentration were 1.09 [95% confidence interval (CI), 1.03-1.16] for PM₁₀ and 1.24 (1.08-1.41) for PM_{2.5}.

Phase 2 META-ANALYSIS

RESULTS

Forest plots of odds ratios for preterm birth (**PTB**) for increased exposure 10 µg/m³ increment in PM₁₀

1.1.6 Entire pregnancy

Dibben 2015	3.2%	1.05 [0.76, 1.44]
Hao 2016	21.8%	1.06 [1.01, 1.11]
Padula 2014 Dec	23.3%	1.18 [1.14, 1.22]
Wu(a) 2011	14.4%	1.08 [0.97, 1.20]
Wu(b) 2011	16.9%	1.12 [1.03, 1.22]
Zhao 2015	20.4%	1.02 [0.96, 1.08]
Subtotal (95% CI)	100.0%	1.09 [1.03, 1.16]

Heterogeneity: Tau² = 0.00; Chi² = 24.01, df = 5 (P = 0.0002); l² = 79% Test for overall effect: Z = 2.80 (P = 0.005)

Forest plots of odds ratios for preterm birth (**PTB**) for increased exposure 10 µg/m³ increment in PM_{2.5}

Phase 2 **META-ANALYSIS**

RESULTS

Summary of pooled effects estimates, expressed as odds ratios for preterm birth (PTB) for increased exposure of ambient air pollutants; 10 ppb increment in NO₂ (open square) or O_3 (circle), 1 ppb increment in CO (closed triangle)

 O_3 showed significant association with PTB: the polled EEs per 10 ppb increase in O_3 concentration were 1.03 (1.01-1.04) for entire pregnancy. CO also showed possible association with PTB in entire pregnancy exposure: the polled EEs per 1 ppb increase in CO concentration were 1.36 (1.15-1.62).

FUTURE EPH CHALLENGES

In this systematic review, we have revealed many methodological problems related to investigation of effect of AP on pregnancy outcomes

updated current scientific evidence

- pregnancy outcomes
- atmospheric pollution
- AP exposure assessment
- potential confounders
- gestational window of exposure
- improvement of scientific evidence

Pregnancy outcomes

FUTURE EPH CHALLENGES

• PTB and LBW were most frequently investigated outcomes

- different subcategories of PTB might have different etiology
- cut-off value of 2.500 g for LBW may not be appropriate for all settings (VLBW and extremely LBW: BW less than 1.500 and less than 1.000 g)

birth records as a source of pregnancy outcome

- monitoring programs/registries/perinatal information systems
- Limitation
 - **gestational age misclassification** (first day of the last menstrual period)
 - exposure misclassification (occupational exposure, changes of maternal residence address)

Pregnancy outcomes overlap either in terms of definitions or one outcome may be a risk factor for another

Atmospheric pollution

FUTURE EPH CHALLENGES

- NO₂ and PM_{2.5} were most commonly observed pollutants
 - routinely monitored at MS
 - marker for traffic-related AP
- Size and chemical composition of PM influence its health effects
 - marker for traffic-related AP
 - UFP effects on health outcomes (not routinely monitored pollutants)
 - the effect of mixtures of pollutants

Different range of approaches in included studies from simple (e.g. calculating indexes of AAP) to complex ones (e.g. building multi-pollutant statistical models)

Exposure assessment

FUTURE EPH CHALLENGES

Routine monitoring at MS

- easily accessible and available for a relatively long period of time
- not optimal for exposure assessment (predetermined set of pollutants, methods, missing data)

Modelling approaches

- spatially more precise exposure estimates
- different models (input data, modelling technique,..)

Future approaches

- maternal time-activity patterns, address changes and indoor exposures
- MS, modelling approaches

Comprehensively reviewing exposure assessment approaches according to observed ambient air pollutants, time and spatial resolution, modelling tools/techniques and maternal time-activity patterns

FUTURE EPH CHALLENGES

- many factors influencing pregnancy outcomes that vary in space and time simultaneously with AP
- accurate data on all potential confounders are usually not available
 - maternal smoking
 - alcohol consumption
 - pre-pregnancy BMI
- that different measures of SES probably need to be constructed in each country

Gestational windows of exposure

FUTURE EPH CHALLENGES

- Pregnancy trimesters and entire pregnancy were most frequently defined gestational windows of exposure
- New approaches to account for time-varying exposures
 - time series
 - survival models

Summary of pooled effects estimates

FUTURE EPH CHALLENGES

- variability in observed EEs
 - different input data
 - methodological approaches
- significantly increased risks of PTB for higher entire pregnancy exposures to particulate matter

FUTURE EPH CHALLENGES – REPRUDUCTIVE HEALTH

NEW STUDIES

adjusting for spatially and temporally varying risk factors

DETERMINE POTENTIAL CRITICAL WINDOW OF EXPOSURE

shorter gestational windows and biological mechanisms

STATISTICAL METHODS

using and developing appropriate statistical methods - effects of multipollutant environmental exposures

Important that appropriate policies are adopted on a global scale to diminish AP emissions and to raise awareness of pregnant women

GLOBAL QUALITY OF LIFE

