

Manufacture of Illicit Drugs in NZ Context & Response

International faces of meth

New Zealand faces of meth

Overview

- Methamphetamine contamination in New Zealand
- Impact of meth contamination
- NZ societal response
- Reducing effects of meth
- What we can learn from NZ's meth experience

Why all the fuss?

Methamphetamine is an environmental contaminant that produces actual adverse health effects*

* Dr. Jackie Wright enRiskS and Flinders University

Meth Lab Effects – Health Short Term Exposure – Acute symptoms

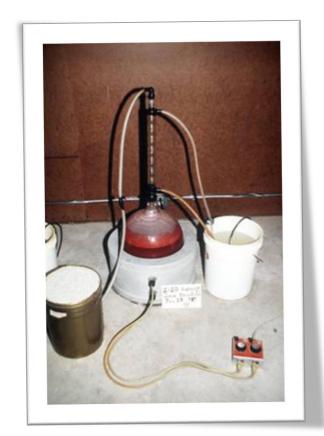
- Headaches
- Watery or burning eyes
- Nausea
- Burning skin
- Sleep disorders
- Respiratory irritation

Meth Lab Effects – Health Longer Term Exposure – Chronic

- Cancer
- Damage to kidneys and liver
- Birth defects
- Reproductive problems
- Death
- Children at proportionately higher risk

Meth Homes – Health Longer Term Exposure – Chronic

- Persistent cough
- Shortness of breath/dizziness
- Decrease in cognitive function
- Behavioural issues
- Sleep disorders
- Skin issues



Manufacture

- Ingredients are readily available
- Process is relatively simply
- Lab set up in an hour or less
- Pseudoephedrine/Contact added to ingredients:
 - Drain cleaner
 - Battery acid
 - Brake fluid & anti-freeze
 - Lantern fuel
 - Solvents toluene
 - lodine
 - Lithium batteries
- Immediate Contamination

Fixing up Meth Contamination

What happens

- Cooking produces gases/vapour
- Contaminants enter fabric of building
- Toxic and persistent

Remedy

- Wash
- Use chemical decontaminant
- Strip back
- Rip out
- Remove
- Replace

Benchmarks for Action

- 0.5 μg Acceptable levels in 2010 NZ Guidelines
 - No reference to use related contamination
- 1.5 and 3.8 µg Acceptable levels in 2017 Standard
 - Applies to use or manufacture



- 0.5 μg Acceptable levels in 2011 Australian Guidelines
 - > Specifically mentions use related contamination as unacceptable
- 0.5 μg Australian enHealth 2017 recommendations
 - Specifically mentions use related contamination as unacceptable

Meth Lab in a suburban home

Meth Lab in an apartment

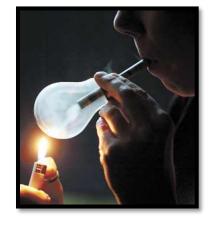
		4.44			
		Amphetamine	Ephedrine	Methamphetamine	Pseudoephedrine
Sample Name:	Lab Number	μg/sample	μg/sample	μg/sample	μg/sample
180009615 A 28-Apr-2017	1766473.1	4.7	25	1,470	< 1.7
180009615 B 28-Apr-2017	1766473.2	7.0	1.14	177	< 0.17
180009615 C 28-Apr-2017	1766473.3	1.96	0.46	60	< 0.17
180009615 D 28-Apr-2017	1766473.4	0.95	0.20	26	< 0.02
180009615 E 28-Apr-2017	1766473.5	9.3	11.3	1,580	< 1.7
180009615 F 28-Apr-2017	1766473.6	2.4	1.17	122	< 0.17
180009615 G 28-Apr-2017	1766473.7	0.76	5.8	197	< 0.17
		- 600			

7 months later

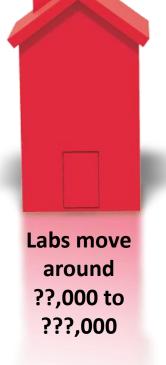
Meth Lab in a commercial premise

		The second secon	5000	A SUCCESSION OF THE PARTY OF TH	(0.00)	
Amphetamine	μg/sample	1.44	1.13	2.3	410	1,480
Ephedrine	μg/sample	0.34	0.54	1.36	< 17	< 17
Methamphetamine	μg/sample	97	90	183	22,000	39,000
Pseudoephedrine	μg/sample	< 0.17	< 0.17	0.64	< 17	< 17

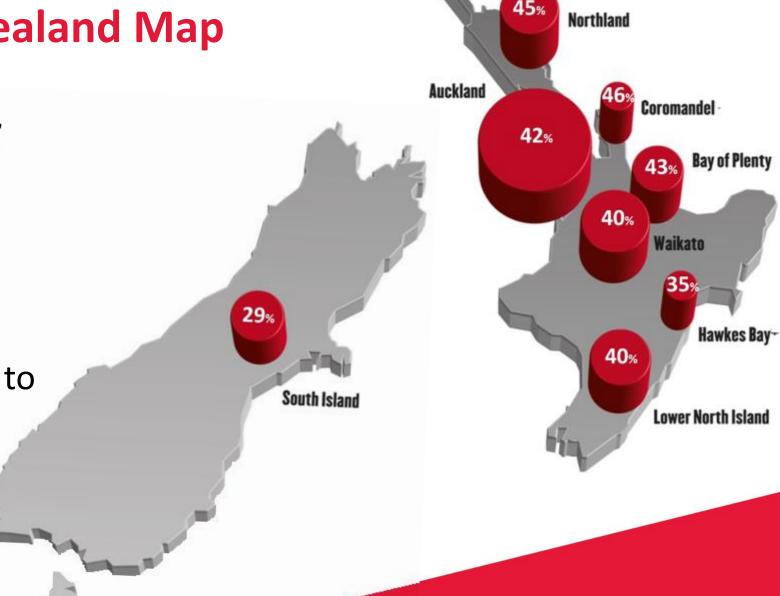
How is meth used



Point bag = 0.1 gram

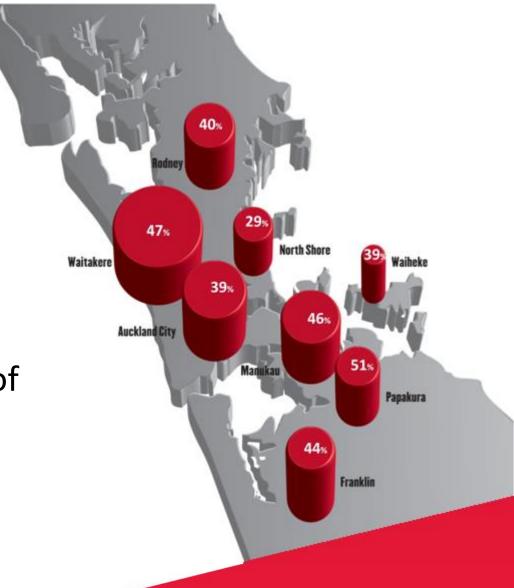


The Scale of New Zealand's Meth Contamination



MethSolutions New Zealand Map

- Figures as at 30 June 2017
- Percentages indicate the proportion of properties identified with Meth Contamination
- Circle size is in proportion to the number of properties tested in each area



MethSolutions Auckland Map

- Figures as at 30 September 2017
- Percentages indicate the proportion of properties identified with Meth Contamination
- Circle size is in proportion to the number of properties tested in each area

Meth Consequences – Health and Wellbeing

- Health risk not being measured
- Real world research identifies risks
- Strong emotional response/impact

Meth Consequences – \$\$\$\$\$

MethSolutions Screening Assessments	\$159+		
Contaminated Site Inspection	\$2,000 to \$3,000		
Decontamination	\$10,000 to \$50,000+		
Post Decontamination retesting	\$2,000 to \$3,000+		
Fit out	\$5,000 to \$50,000+		
Loss of Rent	\$?,000		
Loss of Value of Property	\$??,000		
Reaction of Banks	\$??,000		
Future Liability and Health	\$???,000		

HNZ 2015-16

\$201/1

HNZ 2016-17

\$521

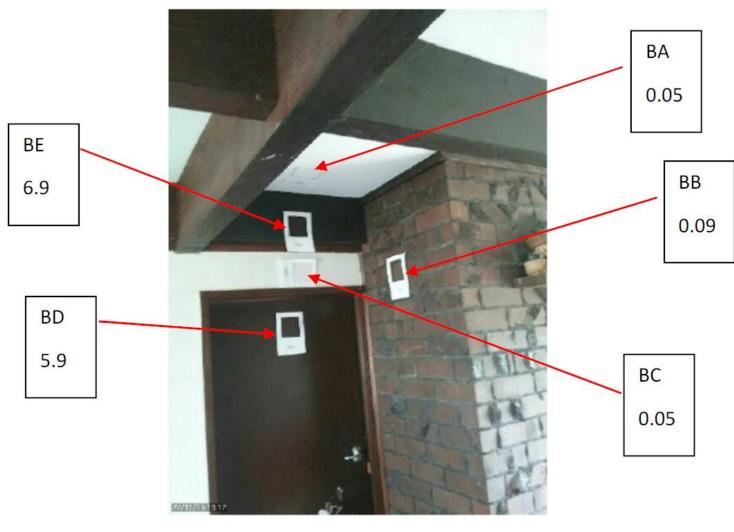
A New Standard

- Pan Societal Committee
- Acceptable post-decon levels increased
 - > 1.5 µg/100sqcm in high use areas
 - > 3.8 μg/100sqcm in low use areas
- Standards for testing
- Standards for testers
- Standards for decontamination

NZS 8510

Invest in 'real world' health focused science

 Acceptable levels should be as high as possible WITHOUT compromising Health, Safety and Wellbeing



COST SAVINGS

Increase Sampling Consistency

- If BB, BE or BD are selected an additional sample SHALL be taken Section 3.3.3.1 (f) & (g)
- If BA or BC are selected no additional sample needs to be taken
- Health Safety and Wellbeing implications?
- Economic implications?
- Service provider liability?

Proactive Property MethManagement strategies

Test for use

Monitor for meth manufacture 24/7 in real time

Putting Focus on Environmental Risks

Frameworks for Decisions Making

- Framework for decision making
- Low cost/high efficacy screening tests
- Bright line test for decision making
- Disclosure obligations make it visible
- Clear actions for remedy
- Clear responsibilities/actions for authorities

+20,000

Summary

- The risk is real
- It's impacts are profound
- Our response must be measured
- Our response must be coordinated
- Decision making frameworks are essential

Contact Us

Website: methsolutions.co.nz

Miles Stratford

- Email: miles.stratford@methsolutions.co.nz
- Mobile: +64 21 819 345
- Ph: + 64 9 320 0863

