UNDRR/ISC Hazard Information Profiles

Professor Virginia Murray
Head of Global Disaster Risk Reduction, UK Health Security Agency
Chair of the TWG for UNDRR / ISC for Hazard Definition and Classification Review technical report and the Hazard Information Profiles and on behalf our many authors and reviewers
Co-chair of the WHO Thematic Platform Health and Disaster Risk Management Research Network
Member of the WHO Collaborating Centre on Global Health Security
Member of CODATA international Science Council Executive Committee
Member of Integrated Research on Disaster Risk (IRDR) Scientific Committee
Co-Chair of IRDR Disaster Loss Data (DATA)
Sendai Framework for Disaster Risk Reduction 2015 - 2030
Sendai Framework for Disaster Risk Reduction 2015-2030

1 Global Outcome
13 Guiding Principles
4 Priorities for Action at all levels
7 Global Targets

7 GLOBAL TARGETS

Reduce
- Mortality/
global population
 2020-2030 Average << 2005-2015 Average
- Affected people/
global population
 2020-2030 Average << 2005-2015 Average
- Economic loss/
global GDP
 2030 Ratio << 2015 Ratio
- Damage to critical infrastructure & disruption of basic services
 2030 Values << 2015 Values

Increase
- Countries with national & local DRR strategies
 2020 Value >> 2015 Value
- International cooperation
to developing countries
 2030 Value >> 2015 Value
- Availability and access to multi-hazard early warning systems & disaster risk information and assessments
 2030 Values >> 2015 Values
To strengthen technical and scientific capacity to capitalize on and consolidate existing knowledge and to develop and apply methodologies and models to assess disaster risks, vulnerabilities and exposure to all hazards; (paragraph 24 j)
UNDRR
UN agency and organisations including WMO, WHO, FAO and others

ISC partners including Integrated Research on Disaster Risk, CODATA, GEO, GEM and others

International Humanitarian Organisation IFRC

Industrial Science Partners Insurance Development Forum
The Hazard Review and Classification project: the process

Expanded scope of hazards of the Sendai Framework

UNGA definition of hazard as a process, phenomenon, or human activity that may cause harm or damage

The data sources:
- Scientific hazard glossaries
- IRDR Peril Classification
- UN glossaries
- Sendai Monitor hazard list
- Survey of scientists on hazards relevant for Sendai
- Consultations of expert communities within the UN and scientific community

Inclusion criteria:
1. The hazard has the potential to impact on a community
2. Proactive and reactive measures are available
3. The hazard has measurable spatial and temporal components

Hazard list:
302 hazards across these hazard types: hydromet, extraterrestrial, geological, environmental, biological, chemical, technological and societal.

Recommendations:
1. Regular review and update
2. Facilitate the development of a multi-hazard information system
3. Standardise definitions across users and sectors
5. Conduct further work to operationalise parameters for exposure, vulnerability and capacity, building on the UNGA definitions
6. Address cascading and complex hazards and risks

Dialogue towards a more holistic and consistent approach to hazards identification and definition
UNDRR / ISC Hazard Information Profiles

302 Hazards

10 Clusters; 53 hazards
1. Radiation
2. CBRENE
3. Construction/Structural Failure
4. Infrastructure Failure
5. Cyber Hazard
6. Industrial Failure
7. Waste
8. Marine
9. Flood
10. Transportation

10 Clusters; 88 hazards
1. Fisheries and Aquaculture
2. Insect Infestation
3. Invasive Species
4. Human-Animal Interaction
5. CBRENE
6. Mental Health
7. Food Safety
8. Infectious Disease (Plants)
9. Infectious Diseases (Human and Animal)
10. Infectious Diseases (Aquaculture)

10 Clusters; 15 hazards
1. Genes
2. Heavy metals
3. Food Safety
4. Pesticides
5. Persistent Organic Pollutants
6. Hydrocarbons
7. CBRENE
8. Other Chemical Hazards and Toxins
9. Fisheries and Aquaculture

2 Clusters; 24 hazards
1. Environmental Degradation
2. Environmental Degradation (Forestry)

4 Clusters; 8 hazards
1. Conflict
2. Post-Conflict
3. Behavioural
4. Economic

9 Clusters; 60 hazards
1. Convective related
2. Flood
3. Lithometeors
4. Marine
5. Pressure-Related
6. Precipitation-Related
7. Temperature-Related
8. Terrestrial
9. Wind-Related

3 Clusters; 35 hazards
1. Seismogenic (Earthquakes)
2. Volcanogenic (Volcanoes and Geothermal)
3. Other Geohazard

1 Cluster; 9 hazards
Extraterrestrial

1 Cluster; 3 hazards
Chemical

1 Cluster; 2 hazards
Environmental

1 Cluster; 1 hazard
Geohazards

1 Cluster; 1 hazard
Biological

1 Cluster; 1 hazard
Technological

1 Cluster; 1 hazard
Societal
Hazard Information Profiles
Supplement to
UNDRR / ISC Hazard Definition and Classification Review
Technical Report
October 2021

<table>
<thead>
<tr>
<th>Number</th>
<th>HAZARD</th>
</tr>
</thead>
</table>

Primary definition
Brief Definition of hazard: no more than 3 lines/2 sentences.
Sourced from the highest possible authority and be applicable to all parties and preferably a simple UN definition but also recognised as the highest level that UN member states can use and apply.
REFERENCE/ hyperlink/Web site

Scientific definition
Expanded scientific definition that is preferably measurable, modellable and statistically relevant
REFERENCE/ hyperlink/Web site

Metrics, numerical limits or defined guidelines
Any globally agreed metrics, numerical limits or guidelines defined
Should be globally agreed as a recognised standard, if it is only at a regional level than state this as a reference.
REFERENCE/ hyperlink/Web site

Key relevant UN Conventions and regional conventions / multilateral treaty
REFERENCE/ hyperlink/Web site

Any essential annotations
Such as drivers, outcomes and risk management
REFERENCE/ hyperlink/Web site

Ownership of Definition(s)
UN or Scientific Agency or Organisation who holds the updating responsibility for the Primary Definition
REFERENCE/ hyperlink/Web site
Hazards Information Profiles (HIPs) are developed through a structured process:

1. **Subject Matter Author(s) Identified**: An individual or a team responsible for gathering information and writing about a specific hazard.
2. **Hazard Information Profile Written by Subject Matter Author(s)**: The data and information about the hazard is compiled and written by the identified subject matter experts.
3. **Hazard Information Profiles Reviewed by Subject Matter Experts Not Involved in Writing the Original Document**: Independent review to ensure accuracy and completeness.
4. **Each HIP Finally Agreed by the Chair of the Technical Working Group**: Final approval to ensure the HIP meets the necessary criteria and standards.

An iterative development and review process is conducted to refine and improve the HIPs until they meet the required standards.
Drought

Definition
A drought is a period of abnormally dry weather characterised by a prolonged deficiency of precipitation below a certain threshold over a large area and a period longer than a month (WMO, 2020).

Reference

Annotations
Synonyms
Not identified.

Additional scientific description
Drought is described as conditions that are significantly dryer than normal or otherwise limiting moisture availability to a potentially damaging extent (WMO and IWMI, 2012) or as conditions where there has been a prolonged absence of rainfall or marked deficiency of precipitation (WMO/UNESCO, 2012).

Whereas drought may be defined simply as the absence of water, it is a complex phenomenon which is monitored over a number of time scales and often defined according to need. It is a slow-onset phenomenon that gradually intensifies and can impact many sectors of the economy and the environment (Drought Observatory, no date).

Droughts can be characterised in terms of their severity, location, duration and timing. Droughts can arise from a range of hydro-meteorological processes that suppress precipitation and/or limit surface water or groundwater availability. There are various drought indicators and indices that provide options for identifying the severity, location, duration onset and cessation of such conditions. It is important to note that the impacts of droughts can be as varied as the causes of droughts. Droughts can adversely affect agriculture and food security, hydropower generation and industry, human and animal health, livelihood security, and personal security and access to education. Such impacts depend on the socio-economic context in which droughts occur, in terms of who is exposed to the droughts and the specific vulnerabilities of the exposed entities (WMO and IWMI, 2012).

The drought community has defined several different types of drought that have general or specific sector impacts (ICGAA, no date):
- Meteorological drought: Occurs when dry weather patterns dominate an area. It is defined usually on the basis of the degree of anomaly and the duration of the dry period.
- Hydrological drought: Occurs when low water supply becomes evident and is associated with the effects of periods of precipitation which falls on surface or subsurface water supply.
- Agricultural drought: Occurs when agricultural production becomes affected. It focuses on precipitation shortages, differences between actual evapotranspiration, soil water deficits, reduced groundwater and so on.
- Seasonal drought: Refers to changes in some economic goods, such as elements of meteorological, hydrological, and agricultural drought. It also occurs when the demand for an economic good exceeds supply as a result of a weather-related shortfall in water supply.
Tsunami (Earthquake Trigger)

Definition
Tsunami is the Japanese term meaning wave ('nami') in a harbour ('tsu'). It is a series of travelling waves of extremely long length and period, usually generated by disturbances associated with earthquakes occurring below or near the ocean floor (IOC, 2019).

Reference

Annotations
Synonyms
Not found
Additional scientific description
An tsunami may also be referred to as a 'seismic sea wave' and, incorrectly, a 'tidal wave'. Volcanic eruptions, submarine landslides, and coastal ice calving can also generate tsunamis, as can a large meteorite impacting the ocean. These waves may reach enormous dimensions and travel across entire ocean basins with little loss of energy. They proceed as nearly gravity waves with a typical period of between 10 and 60 minutes. Tsunamis enter and increase in height on approaching shallow water, inundating low-lying areas, and where local submarine topography causes the waves to steepen, they may break and cause great damage (IOC, 2019).

Tsunami-like phenomena generated by meteorological or atmospheric disturbances are known as meteor tsunamis (UNESCO and IOC, 2019).

The Intergovernmental Oceanographic Commission (IOC) uses the following terms to assess the scale and impact of a tsunami (IOC, 2019):

- Travel time: Time required for the first tsunami wave to propagate from its source to a given point on a coastline.
- Arrival time: Time of the first maximum of the tsunami waves.
- inundation or inundation-duration: The horizontal distance inland that a tsunami penetrates, generally measured perpendicularly to the shoreline.
- inundation (maximum): Maximum horizontal penetration of the tsunami from the shoreline. A maximum inundation is measured for each different coast or harbour affected by the tsunami.
- inundation area: Area flooded with water by the tsunami.
- inundation height: Elevation reached by water measured relative to a stated datum such as mean sea level or the sea level at the time of tsunami arrival, at a specified inundation distance. Inundation height is the sum of the flow depth and the local topographic height. Sometimes referred to as tsunami height.
- inundation time: Inundation time is measured horizontally from the mean sea level time. The time between inundation and emergent vegetation is sometimes used as a reference. In tsunami science, the lead time of tsunami run-up is generally used.
Monkeypox (Human)

Definition
Monkeypox is a viral zoonotic disease that has symptoms similar to those of smallpox (WHO, 2019).

Reference

Annotations
- Oil spill
- Oil discharge, ocean bed, oil sources and reception on the sea
- Constant state of municipal oil spills
- Pollution in the Mediterranean
- Oil spills can lead to elevated risk of oil pollution
- Oil spills can lead to increased risk of oil pollution
- Oil spills can lead to increased risk of oil pollution
- Oil spills can lead to increased risk of oil pollution

Monkeypox is a viral zoonosis (a virus transmitted to humans from animals) with symptoms similar to those seen in the past in smallpox patients, although it is clinically less severe. It is caused by orthopoxviruses, a family of viruses that also cause human smallpox (WHO). With the eradication of smallpox in 1980 and subsequent cessation of smallpox vaccination, monkeypox has emerged as the most important orthopoxvirus affecting humans. Monkeypox occurs in Central and West Africa, often in proximity to tropical rainforest areas.

Monkeypox is mostly transmitted to people from various wild animals such as rodents and primates, with limited secondary spread through human-to-human transmission. Monkeypox is less contagious than smallpox but can be fatal in 1-10% of cases.

Common symptoms include fever, headache, lymphadenopathy, back pain, myalgia, and weakness. In smallpox, rashes appear on the face and the body, including to the palms of the hands and soles of the feet. (WHO, 2019).

Monkeypox was first identified in humans in 1970 in the Democratic Republic of the Congo (then known as Zaire) in a 9-year-old boy in a region where smallpox had been eradicated. It was clinically less severe than smallpox. It is caused by Orthopoxviruses, a family of viruses related to smallpox (WHO). Since 1970, cases of monkeypox have been reported from 11 African countries – Benin, Cameroon, the Central African Republic, the Democratic Republic of the Congo, Gabon, Ivory Coast, Liberia, Nigeria, the Republic of the Congo, Sierra Leone, and Senegal. The last confirmed case of monkeypox occurred in 2017 in Nigeria.

The true burden of monkeypox is not known. In 1996–1997, a major outbreak of monkeypox occurred in the Democratic Republic of Congo but with a lower case fatality and a higher attack rate than smallpox. Some patients in these outbreaks tested positive for variola virus and some contained both variola and monkeypox viruses. Outbreaks of monkeypox can explain changes in transmission dynamics. The virus has been exported from Africa a few times. In 2003, monkeypox cases were confirmed in the USA. Patients had been in contact with wild or domestic animals that were infected by African rodents that had been imported into the USA. The virus was later found to be in the USA and in Singapore in 2019 and in Nigeria in 2019. Two distinct genetic clades of the virus have been identified – the Congo Basin and the West African clades – with the former found to be more virulent and transmissible. The genetic diversity between the two clades is thought to be contained in this clade and both monkeypox virus clades have been detected (WHO, 2019).
<table>
<thead>
<tr>
<th>Hazard Information Profile</th>
<th>Supplement to UNDRR-ISIC Hazard Definitions & Classification Review - September 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Stampede or crushing is the surge of individuals in a crowd, in response to a perceived danger or loss of physical space. It often disrupts the orderly movement of crowds resulting in irrational and dangerous movement for self-protection leading to injuries and fatalities (Iliyas et al., 2013).</td>
</tr>
<tr>
<td>Annotations</td>
<td>Synonyms</td>
</tr>
<tr>
<td></td>
<td>Additional scientific description</td>
</tr>
</tbody>
</table>
Levels of Contaminants in Food

Definition
A contaminant in food and feed is defined as any substance that is intentionally added to food or feed for food-production purposes or is present in such food or feed as a result of the primary operations carried out in crop husbandry, animal husbandry (including veterinary medicine), manufacture, processing, preparation, packing, packaging, transport or storage, or as a result of post-harvest contamination. Note: The term includes toxins, such as mycotoxins, but does not include insect fragments, rodent hairs and other contaminants.

Reference

Key relevant UN convention/multilateral treaty
Joint Food and Agriculture Organization of the United Nations (FAO) and World Health Organization (WHO) Food Standards Programme Codex Alimentarius Commission.

Examples of drivers, outcomes and risk management

Drivers: Environmental, industrial and agricultural pollution, intensification of agricultural production, poor hygiene practices along the food chain, international trade.

Outcomes: Safe food, ensured public health, ensured fair practices in food trade.

Risk management: A national legislation and food control system, including food import control, export control, and national monitoring programmes.

Risk management measures: Science-based harmonised texts such as Codex standards, recommendations, guidelines, codes of practice, analytical monitoring, national and international monitoring networks, warning of consumers, retraction from the market.

Normative work to support ensuring safe levels of contaminants in food and feed: Relevant standard setting bodies and a selection of mechanisms, guidance, tools and other resources developed by the FAO, in collaboration with the WHO and a range of partners, aiming to advise and support the delivery of safe levels of contaminants in food and feed are as follows:

- The FAO Food Safety and Quality Programme and FAO Food Systems and Food Safety Division.
- Codex Alimentarius Commission.
- Codex Committee on Contaminants in Food.
- General Standard for Contaminants and Toxins in Food and Feed (CXS 193-1995).
- Joint FAO / WHO Expert Committee on Food Additives (JECFA).
- Risk Based Imported Food Control Manual.
- Food safety risk management: Evidence-informed policies and decisions, considering multiple factors.

Food Safety and Quality Programme: The FAO is a recognised leader in the development of global food safety initiatives and guidance translating these into country level action. The Food Safety and Quality Programme supports an integrated and multidisciplinary approach to food safety risk management through holistic and feasible ‘food chain’ solutions to specific food safety problems as laid out in its strategy for improving food safety globally (FAO, 2014). The foundations for this approach are based on science (FAO, no date).

The Food Systems and Food Safety Division of the FAO supports the strengthening of systems of food safety and quality control at national, regional and international levels. This involves (FAO, no date):

- Strengthening national food control regulatory capacities and global trade facilitation by providing leadership in supporting countries in the assessment and progressive improvement of food control systems, including food safety policy and food
Healthcare Risk Waste

Definition
Healthcare waste includes waste generated within healthcare facilities, research centres and laboratories related to medical procedures and equipment. It also includes waste originating from minor and scattered healthcare sources, including waste produced in the course of emergency medical treatment or healthcare undertaken at home (e.g., home dialysis, self-administration of insulin, recuperative care) (WHO, 2014).

Reference

Annotations
Syndromes
- Terminology varies across stakeholders: medical waste, clinical waste, regulated medical waste, hospital waste (Rutala and Mayhall, 2002).
- Additional scientific description
- The main sources of medical waste are hospitals, clinics, laboratories, blood banks and mortuaries. Whereas physicians at acute care, dental clinics, pharmacies, home based health care and so on, generate healthcare waste but in smaller amounts (BRSA, 2011).

Metrics and numeric limits
- Classification of healthcare waste (HCW) that can inform the metrics is shown below (Basel Convention and WHO, 2005):
 - Healthcare waste for the purpose of transboundary movements can be classified with the codes Y1 (Clinical wastes from medical care in hospitals, medical centres and clinics) or Y2 (Wastes from the production and preparation of pharmaceutical products, or Y3 (Waste pharmaceuticals, drugs and medicines), among others.
 - Approximately 15% of healthcare waste is estimated to be hazardous and has a potential to cause disease or injury. About 65% of healthcare waste is general waste, and is non-hazardous and includes items such as paper, glass, plastic packaging material, and food that have not been in contact with patients. It is similar to domestic/household waste (WHO, 2018).

Key relevant UN convention/multilateral treaty
- Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal (1989). At the time of writing, there were 187 parties to the Basel Convention (UN Treaty Collection, 2019).

Examples of drivers, outcomes and risk management
- Drives for the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal (1989). At the time of writing, there were 187 parties to the Basel Convention (UN Treaty Collection, 2019).

Healthcare waste may result in the following outcomes (WHO, 2018):
- Potentially harmful microorganisms can infect hospital patients, health workers and the general public.
- Release of drug-resistant microorganisms from healthcare facilities into the environment.
- Needle stick injury e.g., a person who experiences one needle stick injury from a needle used on an infected source patient has risks of 20%, 1.8%, and 0.2% respectively of becoming infected with HIV, HBV and HCV.
- Radiation burns.
- Toxic exposure to pharmaceutical products, especially antibiotics and cytotoxic drugs released into the surrounding environment, and to substances such as mercury or disinfectants during the handling or incineration of healthcare wastes.
- Chemical burns arising in the context of disinfection, sterilization or waste treatment activities.
- Air pollution arising from the release of particulate matter during medical waste incineration.
- Thermal injuries occurring in conjunction with open burning and the operation of medical waste incinerators.
- Induced health risks (environmental in nature) due to the release of pathogenic and toxic pollutants into the environment.
- Incineration of non-hazardous waste or the incineration of unsuitable waste and health materials can result in the release of pollutants into the air, to the generation of soot, toxic waste materials containing or mixed with chlorine or fluorine, which are human carcinogenes and have been associated with a range of adverse health effects. Incineration of heavy metals or materials with high content of lead and cadmium can lead to the spread of toxic metals in the environment.
- Treatment of healthcare waste with chemical disinfectants can result in the release of chemical substances into the environment if those substances are not handled, stored and disposed of in an environmentally sound manner.
- Disposal or incineration of healthcare waste, if not properly conducted, can lead to the contamination of drinking water, surface waters, and groundwater if the landfills are not properly constructed.

References

Coordinating agency or organisation
- World Health Organization.
Healthcare waste may result in the following outcomes (WHO, 2018):

- Potentially harmful microorganisms can infect hospital patients, health workers and the general public.
- Release of drug-resistant microorganisms from healthcare facilities into the environment.
- Needle stick injury (e.g., a person who experiences one needle stick injury from a needle used on an infected source patient has risks of 30%, 1.8%, and 0.3% respectively of becoming infected with HBV, HCV and HIV).
- Radiation burns.
- Toxic exposure to pharmaceutical products, especially antibiotics and cytotoxic drugs released into the surrounding environment, and to substances such as mercury or dioxins, during the handling or incineration of healthcare wastes.
- Chemical burns arising in the context of disinfection, sterilisation or waste treatment activities.
- Air pollution arising from the release of particulate matter during medical waste incineration.
- Thermal injuries occurring in conjunction with open burning and the operation of medical waste incinerators.
- Indirect health risks (environmental impact) due to the release of pathogens and toxic pollutants into the environment.
- Inadequate incineration or the incineration of unsuitable health waste materials can result in the release of pollutants into the air and in the generation of ash residue. Incinerated materials containing or treated with chlorine can generate dioxins and furans, which are human carcinogens and have been associated with a range of adverse health effects. Incineration of heavy metals or materials with high metal content (especially lead, mercury and cadmium) can lead to the spread of toxic metals in the environment.
- Treatment of healthcare wastes with chemical disinfectants can result in the release of chemical substances into the environment if those substances are not handled, stored and disposed of in an environmentally sound manner.
- Disposal of untreated healthcare wastes in landfills can lead to the contamination of drinking water, surface waters, and groundwaters if the landfills are not properly constructed.
Recommendations

- Use this hazard list to actively engage policymakers and scientists in evidence-based national risk assessment processes, disaster risk reduction and risk-informed sustainable development, and other actions aimed at managing risks of emergencies and disasters.

- Address cascading and complex hazards and risks.

- Regular review and update and maybe it is time for a Phase 2?
Case Study: UNDRR-WMO CENTRE OF EXCELLENCE FOR CLIMATE AND DISASTER RESILIENCE

Case Study: World Meteorological Organization Cataloguing of Hazardous Events

Case Study: United Nations Inter Agency Expert Group on Disaster Related Statistics

Case Study: World Health Organization Framework for Health Emergency and Disaster Risk Management

CASE STUDY: UNDRR-WMO CENTRE OF EXCELLENCE FOR CLIMATE AND DISASTER RESILIENCE

• This Centre of Excellence for Climate and Disaster Resilience was established on 13 October 2021 – on the International Day for Disaster Risk Reduction.

• It convenes climate and disaster through practical leadership on how to apply science to disaster risk services; joint research; policies; and capacity strengthening to achieve comprehensive disaster and climate risk management at the global, regional, nation and sub-national levels. One goal of the centre is to increase understanding of climate and disaster risks in order to inform development and humanitarian action.

• The UNDRR/ISC hazard information profiles will provide a basis for the standardization of hazard names and definitions, and will enable a more systematic understanding of hazards and their impacts.
WMO is currently implementing a new methodology for cataloguing hazardous events (WMO-CHE). This will provide essential inputs for identifying, reducing and transferring risk, as well as for tracking global policy indicators such as the Sustainable Development Goals, the Paris Agreement and the Sendai Framework.

Methodology uses modern database methods that are hierarchy-free (no tree structure to store data) and facilitates flexible analysis. It centres on uniquely identifying and recording hazardous meteorological, climate, water, and space weather events, and other related environmental phenomena.

WMO will use material developed in the UNDRR/ISC hazard information profiles to begin to identify hazardous events. This will help improve WMO’s understanding of complex and cascading events, and trends in frequency, severity and distribution, and will enable the organization to strengthen early warning systems.
UN unveils ambitious target to adapt to climate change and more extreme weather

Within the next five years, everyone on Earth should be protected by early warning systems against increasingly extreme weather and climate change, according to an ambitious new United Nations target announced today.
The United Nations Inter-Agency Expert Group on Disaster-related Statistics (IAEG-DRS) was established under the aegis of the UN Statistical Commission. This commission is coordinating the development of a global framework on disaster related statistics, while also bringing together national statistical and disaster management offices in order to strengthen the data ecosystem and standards for disaster management in individual countries.

IAEG-DRS uses hazard definitions and classifications from the UNDRR/ISC hazard information profiles to provide an important layer of data standardization that will recommend to governments the use of the reviewed classification system for monitoring and reporting in disaster risk reduction, and thus to gradually integrate it into databases and reporting systems.
Recognizing the wide range of hazards to which communities are exposed, the World Health Organization (WHO) Health Emergency and Disaster Risk Management Framework include the WHO classification of hazards.

This classification was a key input for identifying the hazards to be included in the UNDRR/ISC hazard definition and classification review. The revision of WHO’s classification of hazards now underway aligns with the UNDRR/ISC hazard information profiles.

Both provide a common understanding of how hazards affect public health and enable whole-of-society action such as:

- all-hazards risk assessment;
- multi-hazard early warning systems;
- critical infrastructure protection;
- emergency preparedness and response; and
- delivery of health services to save lives and reduce injuries, illnesses and other health impacts caused by emergencies and disasters.
WMO and WHO launch ClimaHealth portal

Tags: Climate change, Public health, Early Warnings

Published 31 October 2022

The first global knowledge platform dedicated to climate and health - ClimaHealth.info - has been launched by the World Meteorological Organization and World Health Organization Joint Office on climate change and atmospheric sciences.
Welcome to DesInventar Sendai !!!

Disaster loss data for Sustainable Development Goals and Sendai Framework Monitoring System
RIX is a living repository of open-source global, regional and national risk data and information to improve risk knowledge, risk literacy and risk analytics. Contributing to country-led efforts to strengthen their national risk data ecosystems, including for early warning and disaster risk reduction, RIX was launched as a beta in 2022, with new features continuously added. As a multi-purpose platform, RIX seeks to harmonize risk information to facilitate risk analysis by government, UN, private, and other actors for risk-informed decision making and resilience building.
“The adoption of a set of indicators to monitor the Sendai Framework and the Sustainable Development Goals, associated statistical methodologies, and the launch of hazard classification and profiles, are important elements to enhance the data standards to better track losses and damages”, said Prof. Virginia Murray, Head of Global Disaster Risk Reduction, UK Health Security Agency.
2nd Meeting of the Expert Team on Space Weather (7 - 8 March 2023)

START DATE
07 March 2023

END DATE
08 March 2023

LOCATION
online (MS Teams)

ACTIVITY AREAS (1)
UNDRR/ISC Hazard Information Profiles